C1a-C14a	1.322 (5)	C14-C15	1.518 (5)
C1a-C22a	1.489 (6)	C15-C15a	1.610 (5)
C2-C3	1.412 (5)	C15-C16	1.513 (5)
C2-C7	1.427 (5)	C15a-C16a	1.537 (6)
C3-C4	1.350 (5)	C16a-C21a	1.555 (5)
C4-C5	1.387 (6)	C16-C17	1.367 (5)
C5-C6	1.378 (5)	C16-C21	1.410 (5)
C6-C7	1.397 (5)	C17-C18	1.388 (6)
C7-C8	1.457 (4)	C18-C19	1.380 (5)
C8-C9	1.414 (5)	C19-C20	1.366 (5)
C8-C13	1.414 (5)	C20-C21	1.385 (5)
C9-C10	1.374 (5)	C21-C22	1.509 (5)
C10-C11	1.380 (6)	C21a-C22a	1.534 (6)
C11-C12	1.367 (5)	C22a-C22	1.612 (5)
C2-C1-C14	121.5 (3)	C1-C14-C15	117.1 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 22$	122.7 (3)	C13-C14-C15	122.9 (3)
C14-C1-C22	115.8 (3)	C14-C15-C15a	113.5 (3)
$\mathrm{C} 14 a-\mathrm{Cl} a-\mathrm{C} 22 a$	117.7 (3)	C14-C15-C16	107.8 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	123.1 (3)	C15a-C15-C16	112.8 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	120.0 (3)	C14a-C15a-C15	112.5 (3)
C3-C2-C7	116.9 (3)	$\mathrm{C} 14 a-\mathrm{Cl} 5 a-\mathrm{Cl} 6 a$	108.2 (3)
C2-C3-C4	122.8 (4)	C15-C15a-C16a	114.3 (3)
C3-C4-C5	120.3 (3)	C15a-C16a-C21a	112.4 (3)
C4-C5-C6	119.2 (4)	C15-C16-C17	125.0 (3)
C5-C6-C7	121.9 (4)	C15-C16-C21	115.0 (3)
C2-C7-C6	118.9 (3)	C17-C16-C21	119.9 (3)
C2-C7-C8	118.6 (3)	C16-C17-C18	120.4 (3)
C6-C7-C8	122.6 (3)	C17-C18-C19	119.7 (3)
C7-C8-C9	121.3 (3)	C18-C19-C20	120.3 (4)
C7-C8-C13	119.9 (3)	C19-C20-C21	120.9 (3)
C9-C8-C13	118.7 (3)	C16-C21-C20	118.7 (3)
C8-C9-C10	121.1 (4)	C16-C21-C22	116.5 (3)
C9-C10-C11	120.0 (4)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	124.7 (3)
C10-C11-C12	120.9 (3)	$\mathrm{C} 16 a-\mathrm{C} 21 a-\mathrm{C} 22 a$	112.8 (3)
$\mathrm{C} 11-\mathrm{C12-C13}$	120.8 (3)	$\mathrm{C} 1 a-\mathrm{C} 22 a-\mathrm{C} 21 a$	107.9 (3)
C8-C13-C12	118.4 (3)	$\mathrm{C} 1 a-\mathrm{C} 22 a-\mathrm{C} 22$	112.7 (3)
C8-C13-C14	120.0 (3)	$\mathrm{C} 21 \mathrm{a}-\mathrm{C} 22 \mathrm{a}-\mathrm{C} 22$	114.6 (3)
C12-C13-C14	121.6 (3)	C1-C22-C21	108.1 (3)
$\mathrm{Cl} a-\mathrm{Cl} 4 a-\mathrm{Cl} 5 a$	119.1 (4)	$\mathrm{C} 1-\mathrm{C} 22-\mathrm{C} 22 a$	113.0 (3)
C1-C14-C13	119.9 (3)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 22 a$	112.9 (3)
$\mathrm{C} 1-\mathrm{C} 22-\mathrm{C} 22 a-\mathrm{Cla}$	-2.3	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 22 a-$	
C14-C15-C15a-C14a	1.6	C16-C15-C15a-	
Plane (1)		(2) Dihe	l angle
C1-C14		C21	
C15a, C16a, C21a, C22a	$\mathrm{Cla}, \mathrm{Cl}$	C15a, C22a	

Crystals were grown from a solution of dichloromethane and methanol by slow evaporation. A suitable single crystal was attached to the end of a glass fiber using fast-drying epoxy glue. The intensity data were corrected for empirical absorption (ψ scans) (North, Phillips \& Mathews, 1968), Lorentz and polarization effects and secondary extinction. The structure was solved by direct methods and subsequent difference Fourier maps. All C atoms were refined anisotropically. The H atoms were located on difference electron density maps or generated in chemically reasonable positions and were not refined. All calculations were performed using a PDP-11 minicomputer and Enraf-Nonius SDP-Plus software (B. A. Frenz \& Associates, Inc., 1983).

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71298 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH 1050]

References

B. A. Frenz \& Associates, Inc. (1983). SDP-Plus Structure Determination Package. College Station, Texas, USA, and EnrafNonius, Delft, The Netherlands.

Dougherty, D. A., Hounshell, W. D., Schlegel, H. B., Bell, R. A. \& Mislow, K. (1976). Tetrahedron Lett. 39, 3479-3482.
Ehrenberg, M. (1966). Acta Cryst. 20, 177-182, 182-186.
Ehrenberg, M. (1968). Acta Cryst. B24, 1123-1125.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Yang, N. C., Gan, H., Kim, S. S., Masnovi, J., Rafalko, P. W., Ezell, E. F. \& Lenz, G. R. (1990). Tetrahedron Lett. 31, 3825-3828.
Yang, N. C., Masnovi, J., Chiang, W., Wang, T., Shou, H. \& Yang, D. D. H. (1981). Tetrahedron, 37, 3285-3300.

Acta Cryst. (1993). C49, 1965-1967

6,7,8,9-Tetrahydro-4-methyl-2H-pyrano-[3,2-g]quinolin-2-one

Jerry P. Jasinski* and Richard C. Woudenberg
Chemistry Department, Keene State College, 229 Main St, Keene, New Hampshire 03431, USA

(Received 27 October 1992; accepted 18 May 1993)

Abstract

In the title compound, also known as coumarin 339 , the coumarin moiety is planar and coplanar with the methyl group at $\mathrm{C} 4[\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12=179.9$ (2) and $\mathrm{C} 9-$ $\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 12=178.4(2)^{\circ} \mathrm{J}$. The structure is stabilized by extensive intermolecular $\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$ hydrogen bonding.

Comment

The title compound, a laser dye, has been used in novel polymeric environments (Jones \& Ragman, 1990), as well as in singlet excitation-energy correlation chemiluminescence reactions (Tod, Farinotti, Mahuzier \& Gaury, 1989). The benzene and pyrone rings are planar ($\chi^{2}=24.5$ and 88.2) and the dihedral angle between the rings is 1.57°.

Fig. 1. ORTEP (Johnson, 1976) drawing (50\% probability ellipsoids) and atomic numbering scheme.

Experimental

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$
$M_{r}=215.25$
Triclinic
P $\overline{1}$
$a=9.094$ (2) \AA
$b=9.078$ (2) \AA
$c=6.967(2) \AA$
$\alpha=101.25(2)^{\circ}$
$\beta=106.99(2)^{\circ}$
$\gamma=76.48$ (2) ${ }^{\circ}$
$V=529.8(2) \AA^{3}$
$Z=2.00$
$D_{x}=1.349 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$

Data collection

Rigaku AFC-6S diffractometer
ω scans with profile analysis
Absorption correction: empirical
$T_{\min }=0.909, T_{\text {max }}=$ 1.000

2587 measured reflections
2433 independent reflections
1681 observed reflections
$[I>3.00 \sigma(I)]$

Refinement

Refinement on F
Final $R=0.0612$
$w R=0.0707$
$S=2.749$
1681 reflections
198 parameters
Only coordinates of H atoms refined
$w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$
$(\Delta / \sigma)_{\max }=0.0237$

Cell parameters from 24 reflections
$\theta=46.39-50.01^{\circ}$
$\mu=0.0853 \mathrm{~mm}^{-1}$
$T=296.1 \mathrm{~K}$
Prism
$1.00 \times 0.90 \times 0.40 \mathrm{~mm}$ Clear
Crystal source: Eastman Kodak Chemical Co., Rochester, NY 14650, USA
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-9 \rightarrow 9$
3 standard reflections monitored every 150 reflections intensity variation: 1.57%

C10	$0.1598(3)$	$1.1183(2)$	$0.5618(3)$	0.0385
C12	$-0.0775(4)$	$1.3172(4)$	$0.4260(4)$	0.0547
C13	$0.2733(4)$	$0.8106(3)$	$0.1399(4)$	0.0578
C14	$0.356(4)$	$0.6487(4)$	$0.1606(5)$	0.0737
C15	$0.5138(4)$	$0.6380(3)$	$0.3044(4)$	0.0566

Table 2. Geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 2$	$1.375(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.365(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.387(2)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.407(3)$
$\mathrm{O} 11-\mathrm{C} 2$	$1.221(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.46(3)$
$\mathrm{N} 16-\mathrm{C} 7$	$1.362(3)$	$\mathrm{C} 6-\mathrm{C} 13$	$1.513(3)$
$\mathrm{N} 16-\mathrm{C} 15$	$1.450(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.399(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.424(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.366(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.354(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.393(3)$
$\mathrm{C} 4-\mathrm{C} 10$	$1.438(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.501(4)$
$\mathrm{C} 4-\mathrm{C} 12$	$1.497(3)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.481(4)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9$	$121.8(2)$	$\mathrm{N} 16-\mathrm{C} 7-\mathrm{C} 6$	$121.3(2)$
$\mathrm{C} 7-\mathrm{N} 16-\mathrm{C} 15$	$122.8(2)$	$\mathrm{N} 16-\mathrm{C} 7-\mathrm{C} 8$	$119.7(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 11$	$115.6(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$118.9(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.4(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$119.6(2)$
$\mathrm{O} 11-\mathrm{C} 2-\mathrm{C} 3$	$112.0(2)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$115.8(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$122.7(2)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$120.6(2)$
$\mathrm{C} 3-\mathrm{CC} 4-\mathrm{C} 10$	$118.9(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$123.6(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12$	$121.0(2)$	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$126.0(2)$
$\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 12$	$120.1(2)$	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$118.6(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$	$123.4(2)$	$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$115.4(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.1(2)$	$\mathrm{C} 6-\mathrm{C} 13-\mathrm{C} 14$	$111.0(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 13$	$122.5(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$113.0(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 13$	$118.4(2)$		

$\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$	$\mathrm{O} \cdots \mathrm{H}$	$\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$
$\mathrm{C} 2=\mathrm{O} 11 \cdots \mathrm{H} 16^{\mathrm{i}}$	$2.31(3)$	$129.55(3)$
$\mathrm{C} 2=\mathrm{O} 11 \cdots \mathrm{H} 3^{i}$	$2.54(3)$	$111.91(3)$
$\mathrm{C} 2=\mathrm{O} 11 \cdots \mathrm{H} 14 B^{\mathrm{iii}}$	$2.55(4)$	$113.01(9)$
$\mathrm{C} 2=\mathrm{O} 11 \cdots \mathrm{H} 12 \mathrm{C}^{\mathrm{iv}}$	$2.84(3)$	$118.64(8)$
$\mathrm{C} 2-\mathrm{O} 1 \cdots \mathrm{H} 8^{i}$	$2.39(3)$	$117.18(6)$
$\mathrm{C} 2-\mathrm{O} 1 \cdots \mathrm{H} 15 B^{v}$	$2.83(4)$	$86.32(6)$
$\mathrm{C} 2-\mathrm{O} 1 \cdots \mathrm{H} 13 A^{\mathrm{iv}}$	$2.92(3)$	$128.53(2)$

Symmetry code: (i) $-x+1,-y+2,-z+2$; (ii) $-x,-y+3,-z+2$; (iii) $x, y+1, z+1$; (iv) $x, y, z+1$; (v) $-x+1,-y+2,-z+1$.

Crystals were grown from acetonitrile by slow evaporation. The data were scanned at $8.0^{\circ} \mathrm{min}^{-1}(1.42+0.30 \tan \theta)^{\circ}$. Weak reflections $[I<10.0 \sigma(I)$] were rescanned (maximum of two rescans) and the counts accumulated to ensure accurate counting statistics. Lp correction was applied but no decay correction. H atoms were given calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and assigned isotropic thermal parameters of $1.5 \times B_{\text {eq }}$ of the associated C atom; anisotropic thermal parameters were assigned for non-H atoms. The weighting scheme was based on counting statistics and included a factor $(p=0.03)$ to down-weight the intense reflections; $\sigma^{2}\left(F^{2}\right)=S^{2}(C+4 B)+\left(p F_{o}^{2}\right)^{2}$ where $S=$ scan count, $B=$ normalized background. Plots of $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ versus $\left|F_{o}\right|$, the reflection order in data collection, $\sin \theta \mid \lambda$ and various classes of indices showed no unusual trends. All calculations were performed on a VAXstation 3520 minicomputer using TEXSAN (Molecular Structure Corporation, 1985) software. Atomic positions were obtained from the direct-methods program MITHRIL (Gilmore, 1984). The enantiomorphs are indistinguishable from the X-ray data.

The authors wish to acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research and the National Science Foundation Research in Undergraduate Institutions Instrumentation Program (grant No. 8818307) for the creation of the New England Molecular Structure Center at Keene State College.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71337 (24 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD1036]

References

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1976). ORTEPII. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Jones, G. III \& Ragman, M. A. (1990). Proc. Int. Conf. Lasers, pp. 426433.

Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Tod, M., Farinotti, R., Mahuzier, G. \& Gaury, I. (1989). Anal. Chim. Acta, 217, 11-21.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1993). C49, 1967-1969

Structure of 2-(2-Hydroxyethyl)-1-p-tolyl-4,5,6,7-tetrahydro-3(1 H)-isoindolone

Agneš Kapor
Institute of Physics, Faculty of Sciences, Trg Dositeja Obradovicá 4, 21000 Novi Sad, Yugoslavia

Géza Stájer and Gábor Bernáth
Insitute of Pharmaceutical Chemistry, Albert Szent-Cyörgyi Medical University, Szeged, POB 121, H-7601 Hungary
(Received 21 October 1992; accepted 28 April 1993)

Abstract

The flexible cyclohexene ring of the isoindole moiety, as indicated by the positional disorder of the C 5 and C6 atoms, assumes two kinds of half-chair conformation, ${ }^{4} \mathrm{H}_{5}$ or ${ }^{5} \mathrm{H}_{4}$, at an equilibrium ratio of 68:32. The planar pyrrole ring forms dihedral angles of 76.45 (3) and $86.21(9)^{\circ}$ with the best planes through the $1-p$-tolyl and 2-ethyl moieties, respectively. Both moieties occupy a cis position with respect to the pyrrole ring $[\mathrm{N} 2-\mathrm{Cl}-\mathrm{Cl} 2-\mathrm{Cl} 3=98.9(2), \mathrm{Cl}-$ $\left.\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9=82.0(2)^{\circ}\right]$.

Comment

The title compound (4) was synthesized with pharmacological aims (Stájer et al., 1992, unpublished
results), because it is known that similar structures, including different isoindoles condensed with heterocycles, have a potentially anorexigenic effect (Orzalesi et al., 1978).

(4)
cis-2-(p-Toluoyl)-1-cyclohexanecarboxylic acid (1) was refluxed with ethanolamine in toluene, in the presence of p-toluenesulfonic acid as catalyst and 9 b - -tolyl-2,3,5a,6,7,8,9,9a-octahydrooxazolo[2,3-a]-isoindol-5($9 \mathrm{~b} H$)-one (2) was obtained. Under similar conditions in xylene, (1) afforded $1-p$-tolyl- 1 H -3,4,7,8,9,10-hexahydro-2,5-benzoxazocin-6(5H)-one
(3) which could also be prepared from (2) by heating in xylene. (2) may undergo transformation to give (3) or 2-(2-hydroxyethyl)-1-p-tolyl-4,5,6,7-tetra-hydroisoindol- $3(1 H)$-one (4). The isomeric structures of (3) and (4) cannot be differentiated by means of NMR because the signals are merged and the splits are similar. The X-ray data prove structure (4), which may be formed from (2) by simple hydrolysis, but the ring transformation to (3) and subsequent hydrolysis can also be supposed.

The structure was refined for the two most probable positions of atoms C5 and C6, given in Table 1, which indicates the conformational disorder (Fig. 1). The puckering parameters (Cremer \& Pople, 1975) of cyclohexene ring conformations $C[\mathrm{Cla}-\mathrm{C} 3 a-\mathrm{C} 4-$ C5-C6-C7: $\quad Q=0.484$ (5) $\AA, \quad \varphi=32.4$ (8),$\quad \theta=$ $\left.130.0(6)^{\circ}\right]$ and $\mathrm{C}^{\prime}\left[\mathrm{Cl} a-\mathrm{C} 3 a-\mathrm{C} 4-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 7\right.$: $\left.Q=0.46(1) \AA, \varphi=211(2)^{\circ}, \theta=49(2)^{\circ}\right]$ show that it adopts two kinds of half-chair form, ${ }^{4} H_{5}$ and ${ }^{5} H_{4}$, respectively (Boeyens, 1978). The increased motion of the atomic displacements of the peripheral atoms

